REPORT DOCUMENTATION PAGE Bt O, 07040180

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
19-11-2002 Final report 6/1/97 — 7/14/00
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBERS

N00014-97-1-0598 .
Natural Interaction with Pedagogical Agents in Virtual Interactions

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

W. Lewis Johnson

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)
Office of Naval Research ONR
800 N. Quincy St.
Ariington, VA 22217-5660 OO oy NUMSER,

12. DISTRIBUTION AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The USC / Information Sciences Institute (ISI), in collaboration with Lockheed Martin and USC Behavior Technology
Laboratory, conducted a research project named Virtual Environments for Training (VET) between October 1995 and
February 1999. VET developed an integrated prototype of an intelligent virtual reality-based training system. ISI's main
contribution to this project was the development of the Steve pedagogical agent, an embodied agent that can participate in
training simulations, as a virtual coach or a virtual team member.

In support of this grant ISI received a supplemental AASERT award, entitled “Natural Interaction with Pedagogical Agents in
Virtual Environments.” Funding for this work began in June of 1997 and continued through August of 2000. The overall
purpose of this project was to improve the naturalness and effective of interaction between humans and the Steve pedagogical
agent, both during lesson authoring and lesson execution. Several students were supported by this award. This report
summarizes the work of each student who was supported by the grant.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: | 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES W. Lewis Johnson

075

/906

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

¢. THIS PAGE

UNCLASSIFIED

19b. TELEPHONE NUMBER (Include area code)

310-448-8210

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Natural Interaction with Pedagogical Agents in Virtual
Environments

W. Lewis Johnson, Principal Investigator

ONR Grant No. N00014-97-1-0598
ISI Proposal No. 96-ISI-104
The USC / Information Sciences Institute (ISI), in collaboration with Lockheed Martin
and USC Behavior Technology Laboratory, conducted a research project named Virtual
Environments for Training (VET) between October 1995 and February 1999. VET
developed an integrated prototype of an intelligent virtual reality-based training system.
ISI’s main contribution to this project was the development of the Steve pedagogical
agent, an embodied agent that can participate in training simulations, as a virtual coach or
a virtual team member.

In support of this grant ISI received a supplemental AASERT award, entitled “Natural
Interaction with Pedagogical Agents in Virtual Environments.” Funding for this work
began in June of 1997 and continued through August of 2000. The overall purpose of
this project was to improve the naturalness and effective of interaction between humans
and the Steve pedagogical agent, both during lesson authoring and lesson execution.
Several students were supported by this award. This report summarizes the work of each
student who was supported by the grant.

Richard Angros’s Diligent

Richard Angros conducted his dissertation research on the topic of authoring knowledge
for use by the Steve agent in training. The main results of his work were published
recently at the First International Joint Conference on Autonomous Agents and Multi-
Agent Systems, and summarized below.

Angros’s system, called Diligent, acquires subject matter knowledge from instructors
using a method inspired by human tutorial dialog, combining direct specification,
demonstration, and experimentation. The human instructor demonstrates the skill being
taught, while the agent observes the effects of the procedure on the simulated world. The
agent then autonomously experiments with the procedure, making modifications to it, in
order to understand the role of each step in the procedure. At various points the
instructor can provide clarifications, and modify the developing procedural description as
needed.

Types of acquired knowledge

Diligent acquires three types of domain knowledge: (1) task models, which describe
domain procedures, (2) operators, which model the preconditions and effects of domain
actions, and (3) linguistic knowledge, which allows a tutor to talk about the domain.

The representation for task models must satisfy two requirements. First, it must allow the
tutor to determine the next appropriate action while demonstrating a task or watching a

20030106 075

student, even if this requires adapting standard procedures to unexpected student actions.
Second, it must allow the tutor to explain the role of any suggested action in completing
the task.

To meet these requirements, Diligent uses a relatively standard hierarchical plan
representation to formalize tasks. A task model includes a set of steps, a set of end goals,
a set of ordering constraints, and a set of causal links. Each step may either be a
primitive action (e.g., press a button) or a composite action (i.e., itself a task). The end
goals of the task describe a state the environment must be in for the task to be considered
complete (e.g., “valvel open” or “engine on”). Ordering constraints impose binary
ordering relations between steps in the procedure. Finally, causal links represent the role
of steps in a task; each causal link specifies that one step in the task achieves a particular
precondition for another step in the task (or for termination of the task). For example,
pulling out a dipstick achieves the goal of exposing the level indicator, which is a
precondition for checking the oil level.

This representation was chosen for its compatibility with relevant prior work. For
simulation-based tutoring, Rickel and Johnson have shown how partial-order planning
techniques can use this task representation to construct and revise plans for completing a
task in the face of unexpected student actions, as well as dynamically generate
explanations for the role of each step in the plan in completing the task. The causal links
in the representation are especially important. They support plan revision by allowing the
tutor to determine which task steps are still relevant to achieving the task's end goals.
They also support explanation generation; the tutor can combine its knowledge of the
causal links in the task model with its knowledge of which parts of the task are still
relevant in order to explain the role of an action in completing the task.

To complement the task models it acquires, Diligent also acquires a set of operators that
model the preconditions and effects of the domain actions in the task models. Task
models only specify those preconditions and effects of task steps that are relevant to
completing the task. In contrast, operators specify all the possible effects of a domain
action, and the required preconditions for each effect. Like most work on planning, our
work focuses on actions with discrete (rather than continuous) effects.

Finally, to allow the tutor to talk to students, Diligent acquires linguistic knowledge.
Specifically, Diligent currently learns text fragments for the various elements of its
ontology; these can be used with domain-independent text templates to support natural
language generation during tutoring. In the future, we plan to support the acquisition of
more structured linguistic knowledge to support more sophisticated natural language
generation techniques.

Sources of knowledge

In simulation-based training, students learn procedural tasks by practicing them in a
simulation of their work environment. The simulator has a user interface that allows
students to perform domain actions and see their effects. Diligent exploits the same
simulator to acquire its domain knowledge.

Diligent makes few assumptions about the simulator. First, it assumes that the human
instructor can perform domain actions, so that the instructor can demonstrate tasks for
Diligent. Second, it assumes that Diligent can perform the same actions itself by sending
commands to the simulator; this enables it to experiment with domain tasks. Third, it
assumes that the simulator will send Diligent an action observation whenever Diligent or
the human instructor performs an action. The action observation shoyld include the
simulation state in which the action was performed, the action that was taken, and its
effects. For compatibility with a wide range of simulators, Diligent assumes that the
simulation state is represented as a set of state variables and their values; an effect is a
new value for a state variable. Finally, Diligent requires the ability to save a state of the
simulator and restore it later, so that it can repeat experiments from a known state.

Unlike some other systems, we do not assume that Diligent can make arbitrary changes
to the simulation state. While the ability to make arbitrary changes greatly simplifies
learning, allowing the agent to see the effect of each change on an action's effects, this
ability is impractical for most simulators. Many simulators enforce a wide variety of
constraints among state variables. While they are able to maintain these constraints for
legal domain actions, they often cannot maintain them in the face of arbitrary changes to
individual state variables. Even if they could, propagation of these constraints would
violate the agent's desire to make individual changes.

It may seem as if a computer tutor could simply use the domain logic in the simulator,
rather than acquiring it indirectly by learning from the simulator. However, this is also
impractical. A wide variety of simulators exist, each with its own (often custom)
representation. Rather than build tutoring methods that can exploit these different
representations, or build methods that can automatically convert from these
representations into our target representation, our goal is to build general learning
methods that can acquire our target domain knowledge from any simulator that supports
the API described above.

In addition to the simulator, Diligent has a second source of knowledge: the human
instructor. Our research focuses on human instructors that have domain expertise but not
necessarily any abilities to program or formalize knowledge. Thus, teaching Diligent
should be, as much as possible, like teaching another person. The instructor teaches
Diligent by demonstrating tasks in the simulator and by using a GUI to issue commands,
directly provide elements of domain knowledge, answer Diligent's questions, and review
Diligent's knowledge.

Integrating demonstration, experimentation, and direct
specification

Diligent places relatively few burdens on instructors, compared to previous systems.
Some earlier systems ask a large number of questions, some require a large number of
demonstrations, and some require an initial domain theory. Diligent minimizes the need
for demonstrations, questions, and an initial domain theory through a novel combination
of programming by demonstration, autonomous experimentation, and direct specification.

Demonstrations

Diligent begins learning about a procedure through a process of programming by
demonstration. The human instructor issues a command for Diligent to observe his
actions, and then performs the procedure by taking actions in the simulator. During this
demonstration, Diligent receives action observation messages from the simulator,
processing them to create operators, and stores the sequence of actions as a
demonstration. -

Diligent records actions as a human instructor executes each step in the task being
learned, noting the state of the simulated environment before and after each action. For
each action observed, as described in the next section, an operator is created to model the
effects of the action; each step in the demonstration is recorded as an instance of an
operator with a set of particular effects.

By the time the demonstration is complete, Diligent has learned a sequence of steps that
can be used to perform the task. This provides Diligent with the set of steps required for
its target task model, as well as one possible ordering of those steps; at this point, as far
as Diligent knows, other orderings may also work. To establish the end goals of the task,
the second part of our task representation, Diligent hypothesizes that likely goals are the
final values of state variables that changed value during the demonstration. The instructor
is then allowed to review this list and remove goals that are merely side effects of the
task.

At this point, Diligent could derive the ordering constraints and causal links from its
operator models, but there would most likely be errors. During a demonstration, Diligent
typically only sees an action taken under one set of circumstances. This is insufficient to
identify the precise preconditions of operators, which are needed to identify the ordering
constraints and causal links among steps. To refine how operators model the effects of
actions, the system needs to see the actions performed under different circumstances. To
produce action observations with different preconditions than seen during the instructor's
demonstration, Diligent experiments with the task in the simulated world.

Experimentation

Diligent uses the initial demonstration to generate experiments. The experiments are
conducted by repeating the task once for each step in the original demonstration. Each
time through, Diligent omits a different step to see how the absence of that step affects
subsequent steps. These experiments are a focused way for Diligent to learn on its own
with a minimal amount of background knowledge of the task and environment.

Learning is performed by refining the preconditions of operators associated with each
action using a version space algorithm. A version space maintains bounds representing
the most specific (s-set) and most general (g-set) combinations of preconditions possible
for each effect of the operator. The state of the world before each action, and the changes
that occur afterwards, are used to create new operators and update old ones. To reduce
version space memory requirements, Diligent use the INBF algorithm in which the s-set
and g-set are each represented by a single conjunctive condition. Initially, the s-set is the

state before the action and only matches that state, while the g-set is empty and can match
any state. Successful applications of old operators under new conditions can be used to
broaden the s-set by removing preconditions. Conversely, actions that fail to replicate the
effects of an old operator may be useful in narrowing the g-set by adding additional
preconditions. The combination of the instructor's original demonstration and Diligent's
own experiments provide a range of examples of each operator, and the version space
representation represents the conclusions Diligent has drawn about these operators and
any remaining uncertainty due to insufficient examples.

Direct Specification

After the system has finished experimenting, it can use the original demonstration, the
end goals of the task, and its refined operators to generate a representation of the learned
task. Recall that the record of the demonstration contains the state before and after each
step. Since Diligent associates an operator with each step in the demonstration, it can
use its model of that operator to identify the preconditions that were required in the state
before the step in order to produce the effects that were observed after it was executed.
This allows Diligent to augment the demonstration to include the preconditions of each
step as well as its effects. Given the initial state, Diligent can then analytically derive
how the initial state and earlier steps establish both end goal conditions and preconditions
for later steps. This allows Diligent to identify the causal links and ordering constraints
of the task.

The instructor can review the knowledge Diligent has learned by either examining a
graph of the task model or by allowing STEVE to demonstrate its understanding of the
task by trying to teach it back to the instructor. During this review, the instructor can use
GUTISs to refine Diligent's task model by adding or removing steps, ordering constraints,
and causal links. Such modifications may be necessary if Diligent did not execute an
action in a wide enough variety of circumstances to fully learn the preconditions of its

effects.

Heuristics for Refining Operators

The g-set and s-set in Diligent's operator models represent conservative, provably correct
bounds on the true preconditions (given the assumption of conjunctive preconditions).
When they converge, Diligent knows the true preconditions. Before they converge,
Diligent has a representation of its uncertainty.

In order to derive a task model and display it to the instructor before the operator models
have converged, Diligent must make a reasonable guess at the true preconditions given
the current bounds. The system addresses this problem by using heuristics to create and
maintain a working set of likely preconditions (h-set). The heuristics are designed to add
a small number of preconditions to the g-set that hopefully cover all or most of the actual
preconditions.

The likely preconditions (h-set) are currently identified using two heuristics:
e Earlier steps establish preconditions for later steps. The steps in a
demonstration are related, and the instructor probably has reasons for

demonstrating steps in a given order. A likely reason is that the state changes of
earlier steps establish the preconditions of later steps. In this case, Diligent uses
as preconditions the values of state variables that were changed by earlier steps.
The system ignores possible preconditions that were true before the procedure
started because only state variables that change value can differentiate between
orders of steps that achieve the goal state and those that do not.

e Focus on state variables that change value. If a step changes a particular state
variable as one of its effects, the previous value was probably a precondition.

The heuristics are only used to initialize the h-set of each operator. As Diligent sees
additional examples of an operator, the h-set is refined with the inductive version space
techniques described above, so the h-set is guaranteed to lie between the g-set and s-set
bounds.

Example
To illustrate these concepts, we will discuss authoring a very simple task. Assume that
Diligent has no prior knowledge of how the demonstration’s steps will affect the
simulation.

1. The human instructor tells Diligent that he wants to author a new procedure, and
he provides a name (“shut-valves”) to identify the procedure.

2. The instructor demonstrates the procedure by using the mouse to manipulate
objects in the simulation's graphical window. This particular demonstration
consists of selecting (i.e., clicking on) three valves sequentially: valvel,
valve2, and valve3. When the instructor selects a valve, the valve closes.

3. After the demonstration, the procedure's goals must be specified. Diligent
hypothesizes that likely goals are the final values of state variables that changed
value during the demonstration: (valvel shut) (valve2 shut)
(valve3 shut) . In this case, the instructor verifies that these are the correct
goals.

4. Now the instructor tells Diligent to experiment with the procedure. While
Diligent could generate a task model without experimenting, the task model
would contain errors because Diligent does not yet understand the preconditions
of each step (e.g., preconditions for shutting valvel). The experiments attempt
to understand if and how each step depends on earlier steps. In this example,
Diligent will repeat the procedure twice; the first time it skips step one (closing
valvel) to see the effect on steps two and three, and the second time it skips
step two (closing valve2) to see the effect on step three.

To better understand why these experiments are useful, consider the operator that
represents shutting valve3. When creating an operator during the demonstration,
Diligent hypothesizes that state changes from earlier steps are likely preconditions (h-
set). The version space g-set is empty because no preconditions have been shown to be
necessary, while the version space s-set contains many irrelevant conditions. In contrast,
the h-set is more focused on how the demonstration manipulates the simulation's state.

The demonstration's three steps are independent and could correctly be performed in any
order. However, because Diligent uses likely preconditions (h-set) to generate the task
model, Diligent initially believes that valvel needs to be shut before valve2, and
valve? needs to be shut before valve3. Diligent's experiments correct this problem,
and, after the experiments finish, Diligent can build a correct task

model.

Extensions

To allow Diligent to model more complex procedures and to support better nteraction
with the instructor, several extensions to the above mechanisms have been implemented.
One extension is support for hierarchical task representations, where a subtask is treated
as a single step in a larger task. This allows the reuse of existing tasks and improves
scalability because large, complicated tasks can be broken into simpler subtasks. An
instructor can specify a subtask during a demonstration either by defining a new task as a
step in the current procedure or by indicating that an existing task should be performed at
that point.

To treat a subtask as a single step, the internal details of the subtask are ignored and only
its preconditions and effects are considered by the parent task. To achieve a subtask's
desired effects, Diligent uses a version of STEVE's partial-order planning algorithm for
deciding how to perform a subtask. Diligent uses the likely preconditions (h-set) of the
subtask's steps to determine ordering constraints, causal links and which steps to perform.
However, Diligent will execute all subtask steps that achieve necessary effects, even if
preconditions do not appear to be met, because Diligent's knowledge of the subtask
preconditions might be incomplete or incorrect.

Besides hierarchical tasks, Diligent also supports information gathering or sensing
actions. A sensing action gathers information about the environment's state without
changing it (e.g., looking at a light). Because sensing actions do not change the state and
might be performed at any time, there needs to be a mechanism to insure that they are
performed in the proper context (e.g., look at the light when the motor is off). For
sensing action preconditions, Diligent uses the values of the state variables that have
already changed value in the current task. To record that a sensing action has been
performed in the proper context, Diligent creates internal “mental” state variables, which
are not present in the environment's state. To require that sensing actions are performed,
the mental effects are added to the task's goals.

The above discussion only mentioned a single demonstration of each task. However,
Diligent allows instructors to provide multiple demonstrations of tasks. This allows
instructors to iteratively refine task models, correct mistakes, or elaborate on subtasks.
However, multiple demonstrations raise issues of which initial state to use for each step
when deriving causal links and ordering constraints. Diligent's algorithms for processing
multiple demonstrations provide a foundation and are sufficient for the relatively short
procedures that we have looked at. Incorporating algorithms for more complicated
domains is an area for future work.

Evaluation

We evaluated Diligent to determine whether it simplifies the job of authoring procedural
knowledge. Since Diligent employs two techniques to assist instructors, namely
demonstrations and experiments, we evaluated their separate contributions in facilitating
authoring. Our hypothesis was that both demonstrations and experiments would reduce
the effort required by the instructor and result in more accurate task models. To test the
hypothesis, fifteen computer science graduate students were divided into three groups
that authored procedural knowledge differently: group Gl (four subjects) used
demonstrations, experiments, and direct specification; group G2 (six subjects) used only
demonstrations and direct specification; and group G3 (five subjects) used only direct
specification.

Two dependent measures were used to assess ease of authoring and quality of the
resulting knowledge base. Edits is the number of deliberate changes made to the
knowledge base (e.g., demonstrating a step or changing a precondition). Errors is the
number of mistakes in the task model, either missing or spurious ordering constraints and
causal links. These errors are caused by missing, unnecessary and incorrect preconditions
and goal conditions. The sum of the edits and the errors metrics, called total required
effort, estimates the total work required to create a correct task model.

For each subject, the evaluation covered two consecutive days. The subjects were trained
for approximately 2 hours the first day and had a 30 minute review on the second day.
After training, the subjects authored two machine maintenance procedures (procl and
proc2) of differing complexity, procl the more complex of the two. Both procedures
were authored with an initially empty knowledge base. While a subject was authoring,
the system collected data about his activities. Afterwards, the resulting task models were
manually compared against the desired task models. When authoring each procedure,
subjects were given a time limit, which many subjects reached. Reaching the time limit
was likely to reduce the edits and increase the number of errors.

The authoring was an iterative, multistage process. Subjects were given functional
descriptions of the procedures that gave them enough information to reconstruct the
formal details (e.g., steps, ordering constraints, and causal links) without specifying them
directly. After studying the functional descriptions to understand the procedures, they
used Diligent to specify the steps through either demonstrations (G1 and G2) or direct
specification (G3). After demonstrating, G1 subjects could refine the initial task model
by asking Diligent to experiment with the demonstration. All subjects could then edit the
task models and test them with the STEVE tutor. The process was iterative because
subjects could add more steps, experiment again, perform additional editing, and retest
the task models.

The following are some of the main trends that emerged in the evaluation. For proc2, the
groups were significantly different (ANOVA) and group G2 (only demonstrations) is
significantly better than G3 (only direct specification). Next, consider errors. For procl,
the groups have a significant difference (ANOVA) for both errors of omission (.001
probability) and total errors. For errors of omission on procl, group G2 is significantly

better than G3. Finally, consider total effort. Both procedures have significant ANOVA
for total effort, and for procl, group Gl (experiments) is significantly better than G2
(only demonstrations). Overall, though, the effects with the complex procedure, procl,
are much greater than they were for proc2, suggesting that Diligent's assistance is most
beneficial with complex procedures that have significant opportunities for error.

The results suggest that demonstration and experimentation both played a role in
improving the quality of the task models and reducing the work required to create them.
Task models acquired through demonstrations typically contained spurious elements that
the instructors then needed to delete; however it was easier for them to recognize
spurious elements than to notice when elements were missing, as group G3 was required
to do. Experimentation eliminated many of the spurious elements, further reducing the
effort involved. These effects were most prominent in the more complex procedure
containing many elements.

Summary

The Diligent method exploits the structure and behavior of the simulation environment,
by observing the effects of procedures on the state of the simulation. It thus takes
advantage of infrastructure that must be created in any case, since agent-enhanced
simulation environments require interactive simulations that the agents are able to
observe and interact with. Demonstration and experimentation provide opportunities to
employ machine learning techniques to reduce the effort required to author procedural
knowledge. The agent is able to acquire a significant amount of knowledge from a small
number of demonstrations, and the human instructor can further refine the agent's
knowledge through interactive testing and direct specification.

This method is best suited for authoring procedural skills where the primary focus of the
procedure is to achieve some desired effect in the virtual world, and where the
consequences of actions are readily observed. Not all procedural skills fit this
description. For example, we have chosen not to apply the Diligent method to the
acquisition of clinical procedures for the Adele pedagogical agent. Although diagnostic
procedures in medicine have sequences of steps, the rationales for the steps are often the
conclusions that they permit about the patient's condition rather than the effects they have
on the patient. Furthermore, any effects on the patient are likely to be indirect and not
immediately discernible. Diligent's experimental method is of more limited value in
domains such as this, although demonstrations might still perform a useful role in
describing procedures.

Arthur Kroetz

For his Ph.D. research, Arthur Kroetz, a student in the education program, evaluated the
Steve virtual tutor, using a single case study method with qualitative measures. Relevant
publications, personal interviews, system documentation, the program environment, and
the simulation procedure itself were examined. The simulation procedure studied 10
non-randomly chosen subjects interacting with Steve. Subjects observed the Steve tutor
demonstrate the readiness procedure and then had to replicate the procedure themselves.
Three constructs were chosen to elucidate the factors of animated character enhancement:

tutor believability, active participation by the subject (constructivism), and what kind of
mental models of the simulation were produced. Results of the experiment showed that
even though Steve lacked emotions, subjects deemed him believable to the level of being
a sentient humanoid. Subjects also expressed freedom to complete the procedure in a
natural, engaging manner but felt constrained to touch other controls not shown in the
demonstration. The mental models formed by the subjects showed lack of ability to
remember details of the simulation and what was the overall function of the simulation.
The presence of Steve within the simulation elicits human-lie responses from the
subjects, allows for efficient learning of a complex procedure, and provides for situated,
active participation in a procedural learning environment.

Andrew Scholer

Steve makes use of many of the opportunities for learning that a dialog between human
and an embodied agent in a virtual world affords. Significant improvements however are
needed to allow Steve to forge demonstration, experimentation, and instruction into a
cohesive dialog that uses verbal and non-verbal communication. Andrew Scholer, a
Ph.D. student in computer science, developed a model for human-agent tutorial dialog,
and commenced implementation of this model.

The model builds upon previous work on computational models of human collaborative
dialog, such as those of Rich, Sidner, Traum, and Lochbaum, extending them to account
for the nonverbal interactions between collaborators in a shared environment. For this to
happen, the agent’s application of communication modalities such as verbal instruction,
physical examples and gestures all had to be made more flexible.

The Diligent model of knowledge acquisition prevented the smooth interleaving of
different modes of communication. A human instructor was able to directly provide only
some of the types of information that Steve needs. Even for many of these types of
knowledge, direct instruction was possibly only when Steve asked a question about a
subject. For example, there was no means for in instructor to provide the name for an
object other than to manipulate it and wait for Steve to ask for the object’s name. To
foster a dialog, the agent must be able to accept instruction about any type of knowledge
it possesses and be a more active learner by demanding such instruction when it can
identify gaps in its own knowledge. Furthermore, such interaction should be able to
happen at any time. Although it is reasonable to make expectations based on context, and
require the instructor to adequately establish context for switches in focus of dialog,
context should not be enforced by limiting what a person can discuss with the agent at
any given time.

Once the agent can use physical actions, instruction and gesture in a flexible manner, it
will be possible to build a more natural and powerful dialog for instruction. Even
abilities such as watching demonstrations and performing experiments, that are already
well developed in Steve, will profit from the ability of an instructor to mix instruction
modalities at will.

As an example, consider demonstrations performed by Steve. The agent watches the
instructor’s actions to learn about both physically performing steps and the rules
governing the operators that those steps apply. Currently, there is not way for the
instructor to focus Steve’s attention on any particular feature of the world—a very natural
process in instructing humans. If the instructor and agent were able to mix verbal and
non-verbal instruction into the demonstration, the instructor would be able to point out
through words and gestures the features of the world worth particular.attention. By
telling Steve “Watch that light” and gazing towards a particular one, the instructor should
be able to specify that Steve evaluate an action solely based upon the effect that it has on
that particular light.

Not only would the instructor be able to use an improved dialog with Steve to focus what
the agent reasons about, but also to suggest what it should be doing. While the agent
experiments with a task, the instructor should be able to focus the agent’s
experimentations by suggesting particular steps or relations to consider. If explicitly told
that a set of steps could be performed in any order, Steve could forego the need to
perform experiments and test the ordering constraints between those steps, using the
instructor’s advice to update its knowledge of the relationships between those steps.
Such tailored instruction would be useful in Steve both in its own learning and in guiding
what it should emphasize when later on it instructors human students.

Ben Moore

Speech and auditory communication play important roles in communication with Steve in
the virtual environment. An undergraduate at USC, Ben Moore, implemented key
elements of the VET architecture dealing with sound and speech communication. One of
these components, RecAppl, used Entropic Research’s speech recognition API to
recognize student requests and speech acts for team members. Another component,
called SoundServer, provides audio effects for objects. It acts as a service, responding to
requests for audio effects. SoundServer was prototyped as a Java application.

i Angros, R. Jr., Johnson, W.L., Rickel, J., & Scholer, A. (2002). Learning domain knowledge for teaching
procedural skills. Proc. of the First. Intl. Joint Conference on Autonomous Agents and Mult-Agent
Systems, 1372-1378. New York: ACM Press.

UNIVERSITY OF SOUTHERN CALIFORNIA @ INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way Marina del Rey, CA 90292

Scalable Coordination Architectures
For Deeply Distributed Systems
(SCADDS)

Quarterly R & D Report No. 11
Period: 1 July 2002 — 30 September 2002

Defense Advanced Research Projects Agency (DoD)
Information Technology Office (ITO)
Under Grant # DABT63-99-1-0011
Issued by Directorate of Contracting
Fort Huachuca, AZ

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Scalable Coordination Architectures for Deeply
Distributed Systems Quarterly Report
1 July 2002 - 30 September 2002

1. Overview

The SCADDS project is exploring and demonstrating scalable coordination mechanisms for deeply
distributed and dynamic systems. Nodes in these systems will be heterogeneous, having a range of
sensing, actuation and communication capabilities. These systems raise many challenges for
distributed system and network design. The first is a shift from node-centric, to data-centric network
architecture. Both scalability and long lifetime call for extensive processing of data within and
among the nodes of the sensor network. Rather than streaming all sensor readings back to a central
site for processing, nodes autonomously exchange data, filter out uninteresting events, and identify
patterns of interest. The second challenge is to build systems that are truly self-configuring; able to
adapt efficiently to ad hoc deployment and both environmental and network dynamics. This
paradigm shift requires a new network architecture. We are investigating an approach we call
directed diffusion. We divide our report into the following subject areas:

Section 2. Diffusion Architecture

Section 3. A New Radio Communication Stack on Mica Motes
Section 4. Testbed Development

Section 5. Sensor IT Collaboration/Integration

Section 6. Administrative (Staffing, Travel, Publications)

2. Directed Diffusion Architecture
2.1 Geographical and Energy Aware Routing and Quality of Task

Previously, we tested Geographical and Energy Aware Routing (GEAR) in a high level simulator,
which ignored many low level details. In order to test our protocol with more realistic lower layer
details, we implemented and evaluated our protocol in ns-2. In the ns simulation, we validated our
two major design choices of GEAR, i.e., load balancing and recursive forwarding inside the target
region.

To evaluate load balancing in GEAR, we compare GEAR with GPSR, where next hop selection is
completely based on geographical distance, therefore no load balancing is involved. In the traffic
scenario we tested (1 traffic pair with source and target randomly selected, which stands for non-
uniform traffic distribution), GEAR can deliver 20% to 60% more packets than GPSR before the
network is partitioned. Moreover, compared to GPSR, GEAR extends network lifetime in up to
. 150% for small packets (180B).

Load balancing in GEAR maximizes its gain with small packets as explained. The threshold
triggered beacon update will generate more overhead than GPSR. On the other hand, in order to do
perimeter forwarding, GPSR carries extra fields in its header. For small packets, GEAR’s extra

2

beacon overhead and GPSR’s packet overhead will cancel each other out, so that load balancing in
GEAR will show its gain. However, for larger packets, the extra header fields in GPSR can be
ignored, thus the beacon overhead will offset the benefits of load balancing in GEAR. However, we
expect sensor network traffic to consist of mostly packets of up to a few hundred bytes due to its
energy constraints. Furthermore, the beacons in the routing layer can be reduced by piggybacking
them in data packets or in MAC layer control packets. -

We also use ns simulations to study if recursive forwarding provides any gain over controlled
flooding in the target region and how this gain changes with packet length. Unicast packet has
RTS/CTS/ACK broadcast packets overhead. However, if packets are large enough, so that control
overhead can be ignored, unicast recursive forwarding is still more efficient than flooding in the
target region. Simulation results show that recursive forwarding delivers from 125% to 150% more
packets than controlled flooding inside the target region. When MAC control overhead is ignored
(large data packets), recursive forwarding exhibits major gains over controlled flooding.

2.2 Geographical and Energy Aware Routing with PUSH

During this quarter, Fabio Silva worked on integrating our GEAR algorithm (Geographical and
Energy Aware Routing, developed by Yan Yu) with PUSH. We believe the addition of GEAR
support for PUSHed messages will greatly improve network lifetime when using PUSH. Exploratory
Data messages will benefit from informed neighbor selection, being routed toward a target region (as
opposed to being flooded in the network). This mechanism is similar to Interest messages being
routed by GEAR toward the target region in Diffusion. The latest release of Diffusion, containing
PUSH and GEAR, along with several other features, is currently available at both the BBN website
(http://dstl.bbn.com) and at the SCADDS website (http://www.isi.edu/scadds).

During the next quarter, plans include (subject to availability of funds):

a) Continue the development and evaluation of different diffusion variants. We believe that the
addition of several variants to the diffusion protocol family will allow us to better match
specific application needs with more efficient communication protocols.

b) Continue to expand our experience with nested-query style applications for Diffusion. During
the next quarter, we expect to develop and deploy a 24/7 application, which will track people
movement on ISI's 11th floor's hallways. In addition to gaining experience in distributed
application design using in-network processing, we expect to increase our understanding of
Directed Diffusion protocols' behavior in a real testbed.

3. A New Radio Communication Stack on Mica Motes

In this quarter, Wei Ye worked with Deborah Estrin and John Heidemann to port S-MAC to the Mica
motes. As a result, we have built a new radio communication stack that includes much more work
than the MAC layer itself. We have investigated the issues of designing a layered architecture on the
tiny resource-constrained sensor nodes.

The layers are intended to provide standard interfaces and services, so that various protocols can be
developed in parallel. The goal of the stack design and implementation is to provide a flexible
architecture that allows protocols at different levels to be easily built and compared with other similar
protocols. We have implemented the physical layer and the MAC layer in our stack. Compared with
the communication stack that comes with the pre-NesC release of TinyOS, our stack has some new
features listed as follows. They are desirable for building different protocols and applications.

a) Different layers/components are free to define their own packet formats. They can freely add
their own headers to packets from upper layers without causing interference.

b) Packets with dramatically different lengths in fast consecutive transmissions can be reliably
received. The current supported maximum packet length is 250 bytes.

¢) A full-featured MAC protocol for sensor networks, S-MAC, is implemented on the stack. It
provides advance features such as effective collision and overhearing avoidance, reliable and
efficient transmission of long messages (can be much longer than 250 bytes), and low duty-
cycle operations on radio.

For detailed design and implementation, please refer to the documentation of the communication
stack at http://www.isi.edu/scadds/papers/commstack.pdf.

We have collected some performance data using the Mica motes with a 433MHz radio and matching
whip antenna within the building of ISI. Results show that our stack achieves similar reliability as
Berkeley’s stack. Figure 1 is the reception rate of receivers at different distances to a common
sender. Our stack obtains almost all 100% reception rates on the receivers whose distance are
between 1m to 16m.

Jerry Zhao implemented several components in TinyOS to support SMAC in legacy applications. A
SMAC generic communication component is developed with the same interfaces to TinyOS
applications as for original MAC. A generic base transceiver component interfaces SMAC with PC
as an alternative solution to moteNIC. With those components, current TinyOS applications can be
smoothly migrated from legacy MAC in TinyOS to SMAC.

Indooxr transmission range: Berkeley stack vs. 1S! stack
110 T T T

100 e eSS - e 4
2 e SN
i \
® H ! \ E
] { N
P i 3
8 3 1 ,i []
v i %
Voo] I -
Lo i ooy
70} V0 H i ;: .
= ¢ i s
€ . i Vo
& ., i)
* sl ¢ L
g i ! N
13 X i Vo
£ o b 3 Vo H
& - it f H :
& iy : 3
3 i & Eo
= 5 I P
o ¢ Voo
3 b b
¥ <
- \«i{ A Y
Y it
3 AU
2 3 i :
AN
IR
10 & f 0L
&
\f 5,
o . . : N s
[1 10 15 25 2%

Distance between fransmitr and receiver (m)

Future plan includes:

a) Measure the throughput and latency of our stack with S-MAC.
b) Performance analysis of S-MAC in low-duty-cycle mode and in fully active mode.

¢) Submit a journal paper on S-MAC with new implementation and measurement results.

4. Testbed Development

In this quarter, Wei Ye has worked with Mohammad Rahimi, Thanos Stathopoulos, Jerry Zhao and
Naim Busek on testbed development at ISI. Our goal is to deploy about 20 PC/104s with Mica motes
as a radio communication interface (moteNIC). Since our first application is for people detection and

tracking in the ISI building, we also investigated how to use the COTS passive infrared (PIR) motion
detector as the major senor on our testbed. We currently have 6 nodes deployed.

On the hardware side, Wei, Mohammad and Naim have worked to find and compare different PIR
sensors and investigated how to interconnect the PIR sensors to PC/104 and Motes. Mohammad
designed a power board that can be used to power the motes from the power source of the PC/104.
Naim did further improvement on it for time synchronization and the PIR sensor connection.

Wei, Jerry, Fred and Yan worked together to replace the old plastic enclosures on PC/104s with
custom-designed metal enclosures. The new enclosure solution not only provides better protection

for the nodes in rigid environments, but also provides good shielding for CPU boards, reducing
interference to RFM radio transceiver on moteNIC.

On the software side, Wei, Thanos and Jerry have worked to develop software for both motes and
PC/104s as well as to upgrade the configurations of PC/104s. Beside the new communication stack,

Wei also wrote code for motes to work with PIR sensors. Thanos ported the moteNIC code,
originally developed by Jermey Elson, to our new communication stack.

5

Jerry has worked with Wei to upgrade the operating system and programming environment on the
PC/104s. New features include: 1) Upgrading the Linux kernel from version 2.4.7 to 2.4.17 with
devfs (device file system) support, which is essential for running moteNIC on PC/104s. 2) Upgrading
system libraries and adding new management scripts to ease experimentation on the testbed. 3)
Providing an integrated environment for applications on PC/104s to use the moteNIC and the new
communication stack on motes.

Future plans for testbed development include:

a) More tests on the new testbed to reduce uncertainty in node deployment by measuring and
monitoring the connectivity among nodes. -

b) Deploy more nodes to form a large network.

¢) Fabio Silva and Fred Stann plan to use the testbed to run diffusion, nested-queries,
applications, and reliable transport protocols.

5. SenslIT Collaboration/Integration

Fabio Silva and John Heidemann worked with Jim Reich (PARC), integrating Diffusion Routing and
IDSQ. As we increase the number of applications running on top of Diffusion, we gain more
experience on application requirements, allowing us to improve our algorithms and APIs. As we
finish this integration task, we plan to present a joint demo to the Sensit community.

Also, during this quarter, Fabio Silva ran various experiments on both our Sensoria nodes at ISI as
well as on the SensIT testbed at BAE in Austin, TX. In these experiments, we tried to quantify the
performance of a few diffusion variants, including Diffusion, Diffusion + PUSH, Diffusion + GEAR,
and Diffusion + PUSH + GEAR. Data collected from some of these experiments was shown to Sri
Kumar during a demo in late August.

Fabio Silva and John Heidemann have continued to interact with other SensIT participants involving
the diffusion software and its use by other projects in the program. Discussions this quarter included
PARC, BBN, BAE, Auburn, Virginia Tech, U. Wisconsin, Cornell, and other SensIT groups.

The project set up the diffusion-users@isi.edu mailing list to encourage discussion of between
diffusion users and developers. This list will support users of both native diffusion and diffusion
running inside ns-2.

During the next quarter we plan to finish support integrating PARC's IDSQ with Directed Diffusion,
presenting a joint demo to the SensIT community during the next PI meeting in November 2002.

6. Administrative

6.1 Staffing

As the current funding is winding down, we have greatly reduced SCADDS staffing. Graduate
students Chalermek Intanagonwiwat and Ya Xu have left the project. Researcher Wei Ye and
graduate students Jerry Zhao and Yen Yu are now funded by other projects and thus are beginning to
shift their focus to other research. PIs Deborah Estrin and John Heidemann have dramatically scaled
back the time they can devote to this research. Current efforts are primarily devoted to funding Fabio
Silva at-partial time to support continuing SensIT integration efforts. At projections of the current
burn rate, this involvement must end by end-of November or December.

6.2 Travel

On June 10-12 John Heidemann attended the MOBIHOC conference to discuss developments in
wireless networking and diffusion with the ad hoc networking community.

On June 13 John Heidemann gave a presentation "Wireless Sensor Networking Research at ISI" at
Datalogisk Institute, University of Copenhagen. This talk was part of continuing collaboration
between ISI and Philippe Bonnet (now at DIKU). The DIKU researchers are using diffusion filters
to distribute database computation across a sensor network.

On 27 June, Wei Ye attended the IEEE INFOCOM 2002, and presented his paper "An energy-
efficient MAC protocol for wireless sensor networks" in New York.

On 21-23 Aug. John Heidemann, Deborah Estrin, and Ramesh Govindan attended SIGCOMM.
SIGCOMM discussions included a larger role of wireless and sensor networking in future
SGICOMM conferences.

On 5-6 Sep. 2002 John Heidemann attended the IEEE CAS Workshop on Wireless Communications
and Networking in Pasadena. He co-chaired the technical program with Mani Srivastava of UCLA.

On 23-24 Sep. 2002 John Heidemann and Fabio Silva went to PARC in San Jose to participate in
collaborative experiments with Feng Zhao and Jim Reich's group.

6.3 Publications
Accepted this quarter:

Nirupama Bulusu, Vladimir Bychkovskiy, Deborah Estrin, and John Heidemann. Scalable, Ad Hoc
Deployable, RF-Based Localization. In Proceedings of the Grace Hopper Celebration of Women in
Computing, p. to appear. Vancouver, British Columbia, Canada, Institute for Women and
Technology. October, 2002.

http://www.isi.edu/~johnh/PAPERS/Bulusu02a.html

Deepak Ganesan, Deborah Estrin, and John Heidemann. DIMENSIONS: Why do we need a new
Data Handling architecture for Sensor Networks?. In Proceedings of the ACM Workshop on Hot
Topics in Networks, p. to appear. Princeton, NJ, USA, ACM. October, 2002. '
http://www.isi.edu/~johnh/PAPERS/Ganesan02c.html.

Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and Fabio Silva.
Directed Diffusion for Wireless Sensor Networking. “ACM/IEEE Transactions on Networking”, p.
to appear, 2002. Pre-print of accepted ToN journal paper.

http:// www.isi.edu/~johnh/PAPERS/Intanagonwiwat02b.html.

Appeared this quarter:

John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padmaparma Haldar. Diffusion Filters
as a Flexible Architecture for Event Notification in Wireless Sensor Networks. Technical Report N.
ISI-TR-556, USC/Information Sciences Institute, April, 2002.
http://www isi.edu/~johnh/PAPERS/Heidemann02a.html.

Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and John Heidemann. Impact of
Network Density on Data Aggregation in Wireless Sensor Networks. In Proceedings of the 22nd
International Conference on Distributed Computing Systems, p. to appear. Vienna, Austria, IEEE.
July, 2002. See UCLA CSD TR-01-750 for an expanded version of this paper.
http://www_isi.edu/~johnh/PAPERS/Intanagonwiwat02a.html.

Wei Ye, John Heidemann, Deborah Estrin, “An energy-efficient protocol for wireless sensor
networks,” in Proceedings of the IEEE INFOCOM 2002, New York, June 2002.

Wei Ye, John Heidemann, Deborah Estrin, “A flexible and reliable radio communication stack on
Mica motes.” http://www.isi.edu/scadds/papers/commstack.pdf

Submitted this quarter:

Mohammad Rahimi, Hardik Shah, Gaurav Sukhatme, John Heidemann, and Deborah Estrin. Energy
Harvesting in Mobile Sensor Networks. Submitted to ICRA. September, 2002.

6.4 Software released this quarter:

During this quarter, Fabio Silva released two new versions of our Directed Diffusion software to the
SensIT community (Diffusion 3.1.1 on June 27th and Diffusion 3.1.2 on August 28th). New features
include support for the updated Sensoria RF API, an update to GEAR (our Geographical and Energy
Aware Routing protocol), which now supports PUSH; additional support for logging incoming and
outgoing traffic using an i/o-level logging layer; and several API changes that allow more flexibility
when using filters in Diffusion.

The software can be downloaded from the BBN website (http://dstl.bbn.com) or at the SCADDS
website (http://www.isi.edu/SCADDS).

Wei Ye released the initial version of the radio communication stack on the Mica motes, along with a
detailed documentation describing the design, implementation, APIs and some test results. The stack
includes a physical layer and a MAC layer (S-MAC) implementation. We have received some
positive feedback on its flexibility to allow different protocols to be developed in parallel. The
software can be downloaded at http://www.isi.edu/scadds/software/motes/

The detailed documentation about the stack is available at
http://www.isi.edu/scadds/papers/commstack.pdf

